The Variational Origin of Motion by Gaussian Curvature
نویسندگان
چکیده
A variational formulation of an image analysis problem has the nice feature that it is often easier to predict the e ect of minimizing a certain energy functional than to interpret the corresponding EulerLagrange equations. For example, the equations of motion for an active contour usually contains a mean curvature term, which we know will regularizes the contour because mean curvature is the rst variation of curve length, and shorter curves are typically smoother than longer ones. In some applications it may be worth considering Gaussian curvature as a regularizing term instead of mean curvature. The present paper provides a variational principle for this: We show that Gaussian curvature of a regular surface in three-dimensional Euclidean space is the rst variation of an energy functional de ned on the surface. Some properties of the corresponding motion by Gaussian curvature are pointed out, and a simple example is given, where minimization of this functional yields a nontrivial solution.
منابع مشابه
RBF-Chebychev direct method for solving variational problems
This paper establishes a direct method for solving variational problems via a set of Radial basis functions (RBFs) with Gauss-Chebyshev collocation centers. The method consist of reducing a variational problem into a mathematical programming problem. The authors use some optimization techniques to solve the reduced problem. Accuracy and stability of the multiquadric, Gaussian and inverse multiq...
متن کاملA Nested Minimization Approach of Willmore Type Functionals Based on Phase Fields
A novel phase field model for Willmore flow is proposed based on a nested variational time discretization. Thereby, the mean curvature in the Willmore functional is replaced by an approximate speed of mean curvature motion, which is computed via a fully implicit variational model for time discrete mean curvature motion. The time discretization of Willmore flow is then performed in a nested fash...
متن کاملA Phase Field Based Pde Constrained Optimization Approach to Time Discrete Willmore Flow
A novel phase field model for Willmore flow is proposed based on a nested variational time discretization. Thereby, the mean curvature in the Willmore functional is replaced by an approximate speed of mean curvature motion, which is computed via a fully implicit variational model for time discrete mean curvature motion. The time discretization of Willmore flow is then performed in a nested fash...
متن کاملA Phase Field based PDE Constraint Optimization Approach to Time Discrete Willmore Flow
A novel phase field model for Willmore flow is proposed based on a nested variational time discretization. Thereby, the mean curvature in the Willmore functional is replaced by an approximate speed of mean curvature motion, which is computed via a fully implicit variational model for time discrete mean curvature motion. The time discretization of Willmore flow is then performed in a nested fash...
متن کاملBifurcation in a variational problem on a surface with a constraint
We describe a variational problem on a surface under a constraintof geometrical character. Necessary and sufficient conditions for the existence ofbifurcation points are provided. In local coordinates the problem corresponds toa quasilinear elliptic boundary value problem. The problem can be consideredas a physical model for several applications referring to continuum medium andmembranes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007